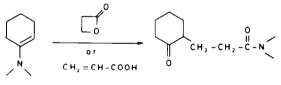
IMINE CHEMISTRY—II[†]

A NEW ROUTE TO CYCLIC ENAMINONES FROM IMINES AND β -PROPIOLACTONE OR α,β -UNSATURATED ACIDS. THE PREPARATION OF ENAMINO-THIONES


R. SHABANA,* J. B. RASMUSSEN, S. O. OLESEN and S.-O. LAWESSON

Department of Organic Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark

(Received in UK 21 December 1979)

Abstract – Imines, formed from cyclohexanone and primary aromatic and aliphatic amines, were reacted with β -propiolactone, acrylic, crotonic, and methacrylic acids to give as main products bicyclic lactams, 3,4,5,6,7,8-hexahydro-2-quinolinone, **2**, and enaminones, 2,3,5,6,7,8-hexahydro-4-quinolinone, **3**. The enaminones **3** and a series of noncyclic enaminones **11** were reacted with 2,4-bis (4-methoxyphenyl)-1,3,2,4dithiadiphosphetane-2,4-disulfide, **9**, a new thiation reagent, giving the corresponding enamino-thiones **10** and **12**, respectively. Compound **2a** was also reacted with **9** giving N-phenyl-3,4,5,6,7,8-hexahydro-2quinolinthione, **13a**. 360 MHz ¹H NMR and 90.25 MHz ¹³C NMR data are reported for the compounds **2a**, **3a** and **10a**.

Enamines, derived from cyclohexanones, undergo smooth reactions with β -propiolactone and α , β unsaturated acids to give as main products δ oxocarboxylic amides¹ in reasonable yields:

Scheme 1.

No acylation of the enamines was observed. Also certain enaminones were found to react in the same way to give N-heterocycles.¹ As it is well known that imines are in tautomeric equilibrium with their respective enamines, and thus can react as enamines, we felt prompted to study the reaction of imines with β -propiolactone and α . β -unsaturated acids.

This paper reports a new synthesis of enaminones as well as enamino-thiones. There are known methods, using P_4S_{10} ,^{2–8} for the transformation of enaminones into enamino-thiones, but unfortunately the yields are low. Another method, the reaction of dithiolium salts^{2–4} with amines, also gives low to medium yields. However, by using a new thiation reagent, 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide,-9, the enaminones were smoothly transformed into the corresponding vinologous thioamides, enamino-thiones, which are useful for the preparation of thiopyrans^{9–11} and thiophenes.¹¹

RESULTS AND DISCUSSION

The reaction between imines and β -propolatione gave as major products enaminones, 3, but also bicyclic lactams. 2, were formed. The formation of 2

*Part I see Ref. 12.

and 3 can best be rationalized by a pathway involving the enamine, which is known to be in equilibrium with the imme. As β -propiolactone,¹³ 4, can undergo both alkyl-oxygen and acyl-oxygen fissions, the bicyclic lactams, 2, and enaminones, 3, can be formed under elimination of water as shown in Scheme 2.

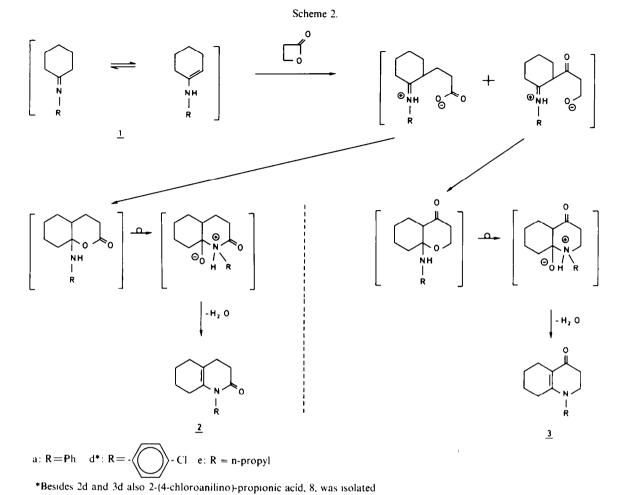
When imines were reacted with acrylic, crotonic, or 2-methacrylic acid, the major products were bicyclic lactams, **2**. A protonation of the imine, which will exist as a "tight ionpair" with the deprotonated acid in low-polar solvents (*i.e.* chlorobenzene), is expected. The "tight ionpair" may collapse giving an activated α,β -unsaturated ester, which can react with another imine in a Michael addition followed by intramolecular acyl-oxygen fission giving bicyclic lactams **2** and enaminones **3**.

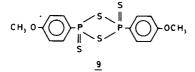
The reaction between N-(cyclohexylidine)-aniline, **Ia** and β -propiolactone, **4**, or acrylic acid, **5**, gave Nphenyl-3,4,5,6,7,8-hexahydro-2-quinolinone, **2a**, and N-phenyl-2,3,5,6,7,8-hexahydro-4-quinolinone, **3a**.

Compound **1a** was also reacted with crotonic acid, **6**. giving 4-methyl-N-phenyl-3,4,5,6,7,8-hexahydro-2quinolinone, **2b**, and 2-methyl-N-phenyl-2,3,5,6,7,8hexahydro-4-quinolinone, **3b**, and with 2-methacrylic acid, **7**, giving only 3-methyl-N-phenyl-3,4,5,6,7,8hexahydro-2-quinolinone, **2c**. Due to steric hindrance **6** and **7** were expected to give lower yields of products. This was only observed with **7**. In the reaction between N-(cyclohexylidine)-4-chloro-aniline. **1d**. and β propiolactone, **4**, or acrylic acid. **5**, the main products were N-(4-chlorophenyl)-2,3,5,6,7,8-hexahydro-4quinolinone, **3d**, or N-(4-chlorophenyl)-3,4,5,6,7,8hexahydro-2-quinolinone, **2d**, respectively, but in addition, 2-(4-chloroanilino)-propionic acid, **8**,¹⁴ was isolated.

The formation of 8 is due to the reaction of 4 or 5 with 4-chloroaniline, a hydrolysis product from the imine, 1d, which is more easily hydrolysed¹⁵ than 1a. Finally, N-(cyclohexylidine)-propylamine, 1e, was reacted with both 4 and 5 giving only N-(propyl)-3.4.5.6.7.8-hexahydro-2-quinolinone.

^{*}On leave from The National Research Centre of Egypt, Dokki, Cairo.

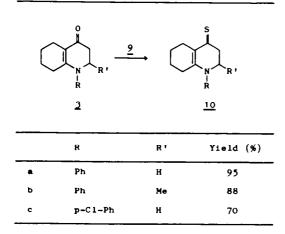



Table 1. Results of the reaction between 1 and 4,5,6 or 7

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$										
: p-pr	R	R ¹	R ²	R ³	<u>Crotonic</u> Reaction compound	Reaction time/h	Yield of 2 (%)	Yield of 3 (%)		
a	Ph	н	н	н	<u>4</u>	6	12	60		
٩	Ph	н	н	н	٤	6	65	10		
b	Ph	н	Me	Me	<u>6</u>	22	40	30		
с	Ph	Me	н	Me	2	20	20	0		
d*	p-Cl-Ph	н	н	н	<u>4</u>	3	0	50		
d**	p-Cl-Ph	н	н	н	2	3	50	0		
•	n-Pr	н	н	н	<u>4</u>	3	30	0		
•	n-Pr	н	н	н	5	3	35	0		

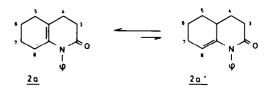
18% of <u>8</u> were isolated.

** 40% of <u>8</u> were isolated


Thiation of enaminones. It has been found that 2,4bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide. 9, is a most effective thiation reagent for ketones,¹⁶ carboxamides,¹⁷⁻²¹ esters,^{22,23} Ssubstituted thionesters,²² lactones,²⁴ lactams²⁵ and imides.²⁵

Because of the vinylogous effect enaminones show great similarities with carboxamides and lactams. The reaction of 9 with enaminones at room temperature was finished in less than 1 hr giving high yields of enaminothiones in most cases (Table 2 and 3). At elevated temperatures the yields are low probably due to polymerisation.⁷

Structure and spectroscopy. All compounds were characterized by the means of MS, IR, ¹HNMR,


Table 2. Thiation of cyclic enaminones

¹³C NMR and elementary analyses. Compound **2a** is known,²⁶ but no proof of structure has been given. The compounds **3a** and **10a** are unknown. As illustrative examples the ¹H NMR and ¹³C NMR data of these three compounds are collected in the Tables 4 and 5. The assignments are made by selective decoupling technique.

It is surprising that only four allylic protons are observed. As seen from the ${}^{1}HNMR$ data the protons at C-8 are shifted up-field. This is due to the neighbouring phenyl group.

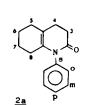
On prolonged standing in CDCl₃ solution a recorded 360 MHz ¹H NMR spectrum of **2a** also showed a resonance of the C-8 proton at 4.56 ppm demonstrating that the following equilibrium exists:

A similar equilibrium is not observed for 13a.

EXPERIMENTAL

The ¹H NMR spectra were recorded at 60 MHz on a Varian A-60 spectrometer and the ¹³C NMR spectra on a Varian CFT-20 spectrometer, except for **2a**, **3a**, **10a** and **13a** which were recorded at 360 MHz and 90.25 MHz, respectively, on a Bruker HX 360 spectrometer. TMS was used as internal reference and chemical shifts in δ -values. CDCl₃ was used as solvent. IR spectra were recorded on a Beckmann IR-18A spectrometer. Elementary analyses were carried out by NOVO-microanalytical Laboratory, NOVO Industry AS, NOVO Allé, DK-2880 Bagsværd, supervised by Dr. R. E. Amsler. Silicagel 60 (Merck) was used for column chromatography. M.ps are uncorrected.

Starting materials. The imines **1a** and **1b** were prepared by the condensation of the aromatic amine with cyclohexanone


Table 3. Thiation of non-cyclic enaminones

		R ¹ -C-CI	H=C(R ⁹)−N	_R ³ R ⁴	$\xrightarrow{2} \qquad R^{1} \xrightarrow{S} \qquad R^{1} \xrightarrow{C-CH=C} (R^{2}) \xrightarrow{R^{3}} \qquad R^{3}$ $\xrightarrow{12}$				
	R ¹	R ²	R ³	R ⁴	Yield of <u>12</u> (%) lit.	М.р.	δ(C=S)/ppm		
a	Me	Me	н	н	20**	oil**	209.3		
ъ	Me	Me	Ph	н	63 °	64	207.4		
c	Ph	н	-сн _а (сн	12)3CH2-	58 ⁶	128	213.0		
đ	Ph	н	-сн 2 (сн	12)2CH2-	92 ⁸	146	210.3		

Optimal separation procedure not yet found.

* B.p._{0.8} 120°C.

Table 4. ¹H NMR and ¹³C NMR data of compound 2a

ı H	NMR	¹³ C NMF	2
н	ppm	с	ppm
		8	132.02
o	7.13	0	128.45
m	7.38	m	129.13
P	7.30	р	128.04
		8 a	138.41
		2	170.22
3	2.64	3	32.11
4	2.26	4	25.61
		4a	114.65
5	2.12	5	28.98
6	1.56	6(7)	22.86
7	1.56	7(6)	22.27
8	1,65	8	26.98

and K_{10}^{\dagger} as catalyst (azeotropic removal of water with toluene).²⁷ **2e** was formed by condensation of n-propylamine with cyclohexanone at room temp, and removal of water with molecular sieves (Linde 5A).²⁸ Compounds **11a**.²⁹ **11b**.²⁹ **11b**.²⁹ **11c**.³⁰ and **11d**.³⁰ were prepared according to known methods.

General procedure for the reaction of imines with α,β unsaturated acids and β -propiolactone. The imine (0.02 mol) was dissolved in 10 ml dry chlorobenzene, and the α,β unsaturated acid (or β -propiolactone) (0.02 mol) was dissolved in 5 ml dry chlorobenzene and added dropwise to the imine at room temp ($\frac{1}{2}$ hr) and then refluxed for different times (Table 1). After the reaction was complete (tlc), the solvent was evaporated under reduced pressure using rotatory-evaporator, and then the products were separated on silica-gel columns (ether/light petroleum).

General procedure for the preparation of enamino-thiones. The enaminone (0.01 mol) were reacted with the dimer **9** (0.005 mol) in dry benzene at room temp until no more of the enaminone was present (tlc). Reaction times ranged from 15-60 min. After filtration and evaporation of the solvent, the residue was placed on a silica-gel column and products eluted, first with a few ml benzene and then with ether/light petroleum (50/50).

Compound 13a. N-phenyl-3,4,5,6,7,8-hexahydro-2-quinolin-thione. 0.01 mol 2a was reacted with 0.005 mol 9 in toluene at 80°C for 1 hr. The solvent was evaporated and the residue was placed on a silica-gel column and eluted with ether/petroleum ether (light) 50/50, yield. 98%, m.p. 107-108. 13a was characterized by the means of MS, IR, ¹H NMR and ¹³C NMR besides microanalyses. (Found: C, 73.20; H, 716; N, 5.68; S, 13.18%, Calc. for: C, 74.07; H, 7.00; N, 5.76; S, 13.17%, δ (C=S)/ppm 200.34.

Acknowledgements \cdots Thanks are expressed to DANIDA for a fellowship to one of us (R.S.) and to Prof. H. Fritz, Ciba-Geigy, Basel, and Dr. S. Scheibye for the 360 MHz spectrum. After this investigation was finished we were informed by Prof. Walter, Hamburg, that his group had used 9 for the preparation of enamino-thiones.³¹

	1 H	INMR (P	pm.)	¹³ C NMR (ppm)			
ASS.	<u></u>	<u>10a</u>	Δ	<u>3a</u>	<u>10a</u>	۵	
•	7.15	7.20	0.05	126.90	126.41	-0.49	
m	7.39	7.46	0.07	129.24	129.79	+0.55	
Р	7.28	7.38	0.10	126.90	128.07	1.17	
5				145.20	144.04	-1.16	
8a				159.16	157.22	-1.94	
2	3.80	3.75	-0.05	52.03	51.82	-0.21	
3	2.59	3.18	0.59	36.51	43.28	6.77	
4				191.19	210.71	19.52	
4 a				109.06	122.79	13.72	
5	2.37	2.72	0.35	21.89	27.98	6.09	
6	1.56	1.65	0.09	22.52	22.67	0.1	
7	1.56	1.59	0.03	22.17	22.26	0.09	
8	2.02	2.09	0.07	29.30	30.15	0.85	

Table 5 ¹H NMR and ¹³C NMR data of the compounds 3a and 10a

 $^{\dagger}K_{10}$ is an acidic catalyst of unknown composition kindly supplied by Sud-Chemic A. G. München.

Comp.		¢/ppm	Analyses (%) Calc. (Found)				
	мр∕℃	1 3 C (C=O)	с	S			
				н	N	C1	
<u>2a</u>	118	170.2	K	nown, 1	it. ³²		
<u>3a</u>	101	191.2	79.29 (79.12	7.49 7.50	6.17 6.13)		
<u>2b</u>	oil	179.9	79.67 (79.44	7.88 7.80	5.81 5.69)		
<u>36</u>	135	191.1	79.67 (79.27	7.88 7.90	5.81 5.69)		
<u>2c</u>	oil	179.5	79.67 (78.45	7.88 7.88	5.81 5.58)		
<u>2d</u>	131	170.1	68.83 (68.48	6.12 6.16	5.35 5.60	13.58 13.58)	
<u>3d</u>	97	191.0	68.83 (68.87	6.12 6.11	5.35 5.39	13.58 13.48)	
<u>2e</u>	011	170.0	74.57 (73.60	9.91 9.92	7.25 7.40)		
<u>10a</u> *	127	210.7	74.07 (73.26	7.00 6.99	5.76 5.67		13.17 13.28)
<u>10b</u> •	146	208.8	74.66 (73.86	7.44 7.52	5.44 5.32		12.46 12.29)
<u>10c</u> *	157	211.8	64.85 (63.43	5.80 5.91		12.76	11.54 11.08)

Table 6. Physical and analytical data of bicyclic lactams, 2, enaminones, 3, and the corresponding enaminothiones

6/ppm ¹³C(C=S)

REFERENCES

- ¹G. Schroll, P. Klemmensen and S-O. Lawesson, Arkw Kemu **26**, 317 (1967).
- ²J. Bignebat, H. Quiniou and N. Lozac'h, *Bull. Soc. Chim. Fr* 1699 (1966).
- ³G. Duguay, H. Quiniou and N. Lozac'h, Ibid., 4485 (1967).
- ⁴J. Bignebat, H. Quiniou and N. Lozac'h, Ibid. 127 (1969)
- ⁵F. Clesse and H. Quiniou, *Ibid.*, 1940 (1969).
- ⁶G. Duguay and H. Quiniou, Ibid., 1918 (1970).
- K. Kamienska-Trela, U. Dabrowska and J. Dabrowski, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 549 (1971).
- ⁸G. Duguay, C. Metayer and H. Quiniou, *Bull. Soc. Chim* Fr., 2507 (1974).
- ⁹J.-P. Pradere and H. Quiniou, Ann. Chem. Ital. 63, 563 (1973).
- ¹⁰J.-P. Pradere, Y. T. N'Guessan and H. Quiniou, *Tetrahedron* **31**, 3059 (1975).
- ¹¹J. C. Meslin, Y. T. N'Guessan and H. Quiniou, *Ibid.* 31, 2679 (1975).
- ¹²S. O. Olesen, J. Ø. Madsen and S-O. Lawesson, Bull. Soc. Chim. Belg, 87, 535 (1978).
- ¹³A. R. Olson and J. L. Hyde, J. Am. Chem. Soc. 63, 2459 (1941).
- ¹⁴C. D. Hurd and S. Hayao, *Ibid.* 74, 5889 (1952)
- ¹⁵R. L. Reeves, *Ibid* , 84, 3332 (1963).
- ¹⁶B. S. Pedersen, S. Scheibye, N. H. Nilsson and S-O. Lawesson, Bull Soc. Chim. Belg. 87, 223 (1978).

- ¹⁷S. Scheibye, B. S. Pedersen and S.-O. Lawesson, *Ibid.* 87, 229 (1978).
- ¹⁸S. Scheibye, B. S. Pedersen and S.-O. Lawesson, *Ibid.* 87, 299 (1978)
- ¹⁹H. Fritz, P. Hug, S.-O. Lawesson, E. Logemann, B. S. Pedersen, H. Sauter, S. Scheibye and T. Winkler, *Ibid.* 87, 525 (1978).
- ²⁰K Clausen, B S. Pedersen, S. Scheibye, S.-O. Lawesson and J. H. Bowie, Org. Mass Spectrometry 14, 101 (1979).
- ²¹K. Clausen, B. S. Pedersen, S. Scheibye, S.-O. Lawesson and J. H. Bowie, Int. J. Mass Spectrom Ion Phys. 29, 223 (1979).
- ²²B. S. Pedersen, S. Scheibye, K. Clausen and S.-O Lawesson, Bull. Soc Chim. Belg. 87, 293 (1978).
- ²³B. S. Pedersen and S.-O. Lawesson, *Tetrahedron* 35, 2433 (1979).
- ²⁴S. Scheibye, J. Kristensen and S.-O. Lawesson, *Ibid.* 35, 1339 (1979).
- ²⁵R. Shabana, S. Scheibye, K. Clausen, S. O. Olesen and S.-O. Lawesson, *Nour J. Chem.* 4, 47 (1980)
- ²⁵S. G. Agbalyan and A. O. Nshanyan, Arm. Khim. Zh. 22, 425 (1969).
- ^{2°}C. Hansch, F. Gschwend and J. Bamberger, J. Am. Chem. Soc. **74**, 4554 (1952).
- ²⁸K. Taguchi and F. H. Westheimer, J. Org. Chem. **36**, 1570 (1971).
- ²⁹J V Greenhill, J. Chem. Soc. Perkin I, 2207 (1976).
- ³⁰E. Benary, Ber. Dtsch. Chem. Ges. 63, 1573 (1930).
- ³¹W Walter and T. Proll, Synthesis 941 (1979).